Search results for "Chemical-mechanical planarization"
showing 5 items of 5 documents
Breaking Bonds and Forming Nanographene Diradicals with Pressure.
2017
New anthanthrone-based polycyclic scaffolds possessing peripheral crowed quinodimethanes have been prepared. While the compounds adopt a closed-shell butterfly shaped structure in the ground state, a concave-to-convex fluxional dynamic inversion is accessible with a low energy barrier through an open-shell diradicaloid transition-state. Mainly driven by the release of strainattributed to the steric hindrance at the peri position of the anthanthrone core, a low-lying open-shell diradical is accessible through planarization of the core, which can be achieved by thermal excitation in solution. Alternatively, planarization can be achieved by application of mild pressure in the solid state, in w…
Effect of Boron Doping on the Wear Behavior of the Growth and Nucleation Surfaces of Micro- and Nanocrystalline Diamond Films
2016
B-doped diamond has become the ultimate material for applications in the field of microelectromechanical systems (MEMS), which require both highly wear resistant and electrically conductive diamond films and microstructures. Despite the extensive research of the tribological properties of undoped diamond, to date there is very limited knowledge of the wear properties of highly B-doped diamond. Therefore, in this work a comprehensive investigation of the wear behavior of highly B-doped diamond is presented. Reciprocating sliding tests are performed on micro- and nanocrystalline diamond (MCD, NCD) films with varying B-doping levels and thicknesses. We demonstrate a linear dependency of the we…
Benzo-Fused Periacenes or Double Helicenes? Different Cyclodehydrogenation Pathways on Surface and in Solution
2019
Controlling the regioselectivity of C-H activation in unimolecular reactions is of great significance for the rational synthesis of functional graphene nanostructures, which are called nanographenes. Here, we demonstrate that the adsorption of tetranaphthyl- p-terphenyl precursors on metal surfaces can completely change the cyclodehydrogenation route and lead to obtaining planar benzo-fused perihexacenes rather than double [7]helicenes during solution synthesis. The course of the on-surface planarization reactions is monitored using scanning probe microscopy, which unambiguously reveals the formation of dibenzoperihexacenes and the structures of reaction intermediates. The regioselective pl…
Surface Coatings Based on Polysilsesquioxanes: Solution-Processible Smooth Hole-Injection Layers for Optoelectronic Applications
2009
Optoelectronic devices usually consist of a transparent conductive oxide (TCO) as one electrode. Interfacial engineering between the TCO electrode and the overlying organic layers is an important method for tuning device performance. We introduce poly(methylsilsesquioxane)-poly(N,N-di-4-methylphenylamino styrene) (PMSSQ-PTPA) as a potential hole-injection layer forming material. Spin-coating and thermally induced crosslinking resulted in an effective planarization of the anode interface. HOMO level (-5.6 eV) and hole mobility (1 × 10(-6) cm(2) · Vs(-1) ) of the film on ITO substrates were measured by cyclovoltammetry and time-of-flight measurement demonstrating the hole injection capabili…
Effects of Carbon-sp3 Bridging on the Electronic Properties of Oligothiophenes
1999
Abstract The electronic properties of rigidified, carbon sp 3 -bridged bithiophenes and terthiophenes have been investigated using density functional theory calculations, sp 3 Bridging has no effect on the bandgap other than that associated to the planarization of the system. Rigidification significantly improves the ability of oligothiophenes as electron donors but diminishes their electron accepting capacity. Grafting of substituents at the sp 3 bridging carbon slightly modifies the electronic properties.